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A fully self-consistent analysis of Boltzmann’s equations for electrons and phonons is used to study how the
resistance of single-walled carbon nanotubes evolves as a function of its length. We demonstrate that the
population of hot optical phonons controls the electronic transport of short nanotubes, whereas acoustical
phonons take the leading role when the nanotube is very long. In this limit of long tubes, we also analyze the
interplay between the diffusive and localized transport regimes when the electron mean-free path and the
localization length due to impurities are comparable.
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Carbon nanotubes are ideal one-dimensional systems
where both basic science and nanodevice applications natu-
rally merge.1–7 Their electronic properties are strongly de-
pendent on small structural variations, defects, and also on
intrinsic properties as the electron-phonon interaction. In par-
ticular, their metallic or insulating character is determined by
the chirality of the carbon atoms forming the nanotube. In
this paper we analyze the transport properties of metallic
single-walled carbon nanotubes �SWNT�.

The electronic transport properties of these nanotubes
roughly present three distinct regimes: �a� ballistic,8 �b�
diffusive,9–12 and �c� localized.13,14 Three different lengths
define the appearance of these regimes: L is the nanotube
length, L0 is the localization length, and � is the electron
mean-free path. In SWNTs this mean-free path is mainly
controlled by the electron-phonon interaction. If L�L0 ,�,
electrons propagate ballistically between the two electrodes,
and because of the two channels involved, the electrical re-
sistance, R, can be simply written as 2R=R0, with R0 being
the quantum of resistance. If ��L ,L0, the transport process
is controlled by the diffusive propagation of electrons and
the resistance exhibits a linear dependence with L, 2R
=R0�1+L /��. Finally, the strong Anderson localization re-
gime in SWNTs emerges when L0�L�� and is character-
ized by an exponential law for R, 2R=R0 exp�L /L0�.

In this paper we will discuss theoretically the transport
properties of SWNTs in both the diffusive and localized re-
gimes. Regarding the diffusive regime, we present a fully
self-consistent analysis of the propagation of electrons along
a �10, 10� SWNT taking into account their interaction with
both acoustical and optical phonons. In particular, we discuss
in detail how the population of hot optical phonons modifies
the electron mean-free path15 and demonstrate that optical
phonons get decoupled from electrons for long enough
SWNTs. In this limit, electron scattering with acoustical
phonons determines the SWNT resistance. An interesting
case appears above this limit �very long tubes, L�50 �m�
where even a very low density of defects can modify the
transport properties of SWNTs. We will show how, if the
three characteristic lengths are such that L0���L, the elec-
tronic transport in SWNTs enters into an intermediate regime
in which the resistance depends on the length as 2R=R0�1
+L /��exp�� /L0�, in good agreement with very recent experi-
mental evidence.16

In the diffusive regime, the nanotube resistance depends

critically on the applied bias, V, since optical phonons of
energy �opt ��opt=0.18 eV� can only be excited if eV��opt.
For eV��opt, only acoustical phonons are operative and then
2R=R0�1+L /�ac�, �ac being the electron mean-free path as-
sociated with acoustical phonons. In the opposite case �eV
��opt�, both types of phonons play a competing role in the
diffusive regime. Notice that at room temperature, �ac is
around 1 �m whereas its optical counterpart, �opt, is of the
order of 50 nm. Therefore, for small L and high biases, R
presents a linear dependence with L and the slope is deter-
mined by �opt. For large enough L, however, the applied bias
varies very smoothly along the nanotube and optical phonons
are excited less effectively. This competing effect between
acoustical and optical phonons was analyzed in Ref. 17 by
solving self-consistently Boltzmann’s equation for electrons
along the nanotube. In this analysis, optical phonons were
not treated at the same level of consistency and the bias-
dependent �opt�V� was fitted to experimental data. This defi-
ciency is important because the population of hot optical
phonons determines the scattering length of the electron-
phonon interaction.15

In our study of the diffusive regime, we have solved self-
consistently the two semiclassical Boltzmann’s equations18

either for electrons �two channels� or for optical phonons
�which are assumed to have a constant energy, �opt�. Acous-
tical phonons contribute to the electron-phonon scattering
but they are assumed to be in thermal equilibrium with the
environment. In our semiclassical model for electrons, for a
given voltage, the energy window between Emax=�opt and
Emin=−eV−�opt, is discretized into N levels �around 80 to
achieve convergence�. We analyze, using Boltzmann’s equa-
tion for each energy, E, the local distribution functions,
n+�x ,E� and n−�x ,E�, representing electrons traveling at con-
stant Fermi velocity, vF, along the x positive and negative
directions of the one-dimensional nanotube �x measures the
distance along the SWNT�. The corresponding hole distribu-
tions are p��x ,E�=1−n��x ,E�. Along their path, electrons
will be scattered by optical and acoustical phonons �see Fig.
1�. We quantify the interaction with the optical phonons by
means of the functions Hopt

� and Gopt
� , where Hopt

� �x ,E� de-
scribes the probability for an electron of energy E �within a
length segment dx located at x� of jumping into another en-
ergy level after the absorption or emission of an optical pho-
non. To account for processes in which electrons of different
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energies jump into the level of energy E, we use the function
Gopt

� . In a similar way, electrons can also be scattered by
acoustical phonons, this process characterized by Hac

� and
Gac

�. Boltzmann’s equations for the electron distributions,
n+�x ,E� and n−�x ,E�, are

�
dn�

dx
= − n��Hopt

� + Hac
�� + p��Gopt

� + Gac
�� , �1�

where we have omitted the x and E dependence for the sake
of brevity. Equation �1� describes how n+ and n− evolve as a
function of x, for constant energy, E, and constant velocity,
vF �see Fig. 1�; as the energy is constant along the trajectory,
no contribution from �n�

�E appears in that equation. Moreover,
we assume local charge neutrality conditions; this determines
the local chemical potential, ��x�, and the electron momen-
tum by the equation E−��x�= �kvF. The mathematical ex-
pressions for Hopt

� and Gopt
� are

Hopt
� �E� =

1

�opt
��1 + nB

opt��	̄p
�E−� + 	p��E−��

+ nB
opt�	̄p
�E+� + 	p��E+��� , �2�

Gopt
� �E� = Hopt

� �E;p� → n
,E� → E
� , �3�

where 	�	̄=1−	� describes the forward �backward� scatter-
ing rate associated with the interaction between electrons and
optical phonons. According to theoretical calculations in Ref.
18, 	 is close to 0.25. In Eqs. �2� and �3�, the population of
optical phonons is characterized by the function nB

opt�x�. In
Eq. �2�, the first term with the factor �1+nB

opt� accounts for
the emission of an optical phonon �final energy, E−=E−�opt�,
while the second one with the factor nB

opt describes the ab-
sorption of an optical phonon �final energy, E+=E+�opt�. The
different terms appearing in Eq. �3� have similar interpreta-
tions. In Eq. �2�, �opt includes all the optical phonons, longi-
tudinal and transversal,18 contributing to the electron-phonon
scattering rate. From Ref. 18, for a �10, 10� carbon nanotube,
�opt�85 nm. In our case, the best fitting to the experimental
data is obtained, however, with �opt�50 nm �see below�.

As expressed in Eq. �1�, longitudinal acoustical phonons

also contribute to the electron-phonon scattering rate, al-
though, being this process a quasielastic one, in our calcula-
tions we only consider backscattering. Accordingly, we take
	=0 in the corresponding equations for Hac

� and Gac
�, analo-

gous to Eqs. �2� and �3�,

Hac
��E� =

1

�ac
��1 + nB

ac�p
�E−� + nB
acp
�E+�� �4�

Gac
��E� = Hac

��E;p� → n
,E� → E
� , �5�

The inset of Fig. 2 shows how electrons above ��x� are
backscattered by acoustical phonons; momentum and energy
conservation yields the phonon energy, h�ac, as a function of
the electron energy measured with respect to the local Fermi
energy, � ��=E−��x��: h�ac=2�vs /vF, with vs and vF
being the acoustical phonon and electron velocities, respec-
tively. It is known that 1 /�ac is proportional to q2 /�ac,19 with
q being the phonon momentum and �ac=qvs. For the quasi-
elastic acoustical phonons, p
�E−�� p
�E+�, and Eqs. �4�
and �5� can be well approximated by

Hac
��E� =

1

�ac
�1 + 2nB

ac�p
�E−� , �6�

Gac
��E� =

1

�ac
�1 + 2nB

ac�n��E+� , �7�

in such a way that an effective �ac can be introduced as

1

�ac
eff =

1

�ac
�1 + 2nB

ac� �8�

where

nB
ac =

1

exp�h�ac

kBT
	 − 1

. �9�

Now we have to distinguish between two limits depend-
ing on the ratio between kBT and h�ac. In the low-T limit
�h�ac�kBT�, as nB

ac→0, 1 /�ac
eff�1 /�ac is proportional to

h�ac, i.e., to �. In the opposite limit �h�ac�kBT�, nB
ac

EF1

h�opt

h�ac

EF2

FIG. 1. �Color online� Schematic picture showing the dis-
cretized electron levels in the nanotube. In our model, electrons can
emit �or absorb� optical phonons of energy h�opt, and emit acousti-
cal phonons of energy h�ac. All these processes yield, in a self-
consistent solution, the electron distribution function, n�x ,E� and
the optical phonon distribution function, nB

opt�x�. For a nanotube, all
electrons move with a constant velocity, vF, even if their energy
w.r.t. the local chemical potential, E−��x�, changes.

eff
ac�

�

�
1

�

�C

��

acq�
ach�

FIG. 2. �Color online� Qualitative behavior of �ac
eff as a function

of the electron energy, �=E−��x�. The inset shows one electron
of energy � being backscattered by acoustical phonons of energy
h�ac and momentum �qac.
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�kBT /h�ac, and 1 /�ac
eff=2kBT / �h�ac�ac�, independent of h�ac

and proportional to kBT. Figure 2 shows schematically �ac
eff as

a function of �, the energy of the incoming electron. For
�C=

vF

2vs
h�ac=

vF

2vs
kBT, �ac

eff has a crossover from a constant
value �proportional to kBT� to a 1 / dependence. At room
temperature, �C is of the order of 0.75 eV, and in our cal-
culations at that temperature we can then take �ac

eff as a con-
stant value that will be fitted to the behavior of the resistance
at very low voltage. In the second part of this paper, we are
going to consider a low-T case, and this approximation will
be reconsidered. In addition, as the relevant acoustical pho-
non energies are between 0 and kBT, we take, for the sake of
simplicity, an energy close to 25 meV as the mean energy of
the excited acoustical phonons.

Boltzmann’s equation for the optical phonon distribution,
nB

opt�x�, can be written as

�nB
opt

�t
+ vopt

�nB
opt

�x
=

1

�opt
��1 + nB

opt�S↓ − nB
optS↑� −

nB
opt

�th
,

�10�

where �th represents the thermalization time for optical
phonons, which contains contributions from nonlinear decay-
ing processes to acoustical phonons and from heat exchange
with the substrate. On the other hand, �opt is the lifetime of
the optical phonons in their interaction with electrons, �opt
=vF�opt. The magnitudes S↓ and S↑ account for the generation
and absorption rates of the optical phonons, respectively.
These quantities depend on the electronic distribution func-
tions, n+ and n−, as follows:

S↓�x� = 

E

�	̄�n+�E�p−�E−� + n−�E�p+�E−�� + 	�n+�E�p+�E−�

+ n−�E�p−�E−��� , �11�

where the sum extends over all the energy levels. S↑�x� can
be obtained by just replacing E− by E+. In our approach we
assume to have optical phonons of constant energy which
implies zero group velocity �vopt=0�. Then, under stationary
conditions ��t→0�, Eq. �10� simplifies to

nB
opt�x� =

�S↓
1 + ��S↑�x� − S↓�x��

, �12�

where �=�th /�opt. In our calculations we will use � as a fit-
ting parameter to available experimental data. Then, our
electronic transport problem �for a fixed nanotube length and
applied bias� is just to solve self-consistently Eq. �1� for
n��x ,E� and Eq. �12� for nB

opt�x�. In our calculations, we take
room temperature �300 K� and assume �opt, �ac

eff, and � to be
known. Once the self-consistent solution is reached, the elec-
tronic current-voltage relation, I�V�, is obtained from the
equation I�V�=4e /h�dE�n+�L ,E�−n−�L ,E��.

Figure 3 renders the evolution of both the �a� resistance
and �b� differential resistance as a function of the length for
a �10, 10� SWNT for four voltages �V=0.4, 0.7, 1.0, and 1.5
V�. Dots correspond to the experimental values as reported
in Ref. 17, whereas full curves show the numerical results
emerging from our self-consistent approach. The values for
the fitting parameters that lead to this excellent agreement

between theory and experiment are �opt=50 nm, �ac
eff

=650 nm, and �=28. Notice that this value for �opt is a bit
smaller than the one obtained from ab initio calculations.18

The dependence of the population of the hot optical
phonons with the applied voltage and length of the nanotube
is analyzed in Fig. 4�c�. This panel shows how the mean
value of nB�x� increases with voltage, explaining why in Ref.
17, a decaying function of �opt versus V was needed in order
to fit the experimental data. The origin of this behavior is that
more optical phonons are excited when the voltage is high,
resulting in a shorter effective mean-free path. It is also
worth noticing that, for a fixed voltage, �nB�x� decreases as
L is increased. This is due to the fact that when the length of
the nanotube is increased, due to the small voltage gradient
along the SWNT, electrons have less and less energy to ex-
cite optical phonons. This results in a change in behavior for
the resistance; for short SWNTs, electron-phonon scattering
is dominated by optical phonons, whereas for long tubes,
acoustical phonons play the dominant role. This change in
behavior is nicely visualized when looking at the evolution
of n+�x ,E� at V=1.0 V for two different lengths of the nano-
tube L=0.5 �m in Fig. 4�a� and L=4 �m in Fig. 4�b�. For
L=0.5 �m, optical phonons control the distribution function
and R while for L=4 �m, acoustical phonons are much
more operative. We should mention that the results presented

µ

Ω

FIG. 3. Resistance �a� and differential resistance, dV /dI, in
panel �b� versus L �in microns�. Four different values of V are
studied: V=0.4 V �full lines�, V=0.7 V �dashed lines�, V=1.0 V
�dash-dotted lines� and V=1.5 V �dotted lines�. Dots corresponds
to experimental data as reported in Ref. 17.
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in this paper show some small quantitative differences with
those of Ref. 17; this is due to the effects of the hot phonon
populations that make �opt to change with L �in Ref. 17, �opt
was taken constant and different for each bias�.

It is convenient to comment also at this point that, appar-
ently, the calculations presented above depend on many dif-
ferent parameters: �ac

eff, �opt, 	, and �. However, 	 is taken
from LDA calculations; �ac

eff from the resistance of clean
nanotubes at low bias; and �opt from the resistance at V
=0.4 V �in this case, there are very few hot phonons and the
resistance at small L determines �opt�. Therefore, in our cal-
culations there is only one free parameter ��� that we have
chosen to give the best fitting to the experimental data. The
quality of this fitting shows the good quality of our results.
From the previous analysis, we conclude that for long
enough SWNTs, the resistance is controlled by acoustical
phonons when electrons do not have enough energy to excite
optical phonons. �ac

eff is around 1 �m at room temperature,
but at very low temperatures �T=1–5 K�, �ac

eff can be of the
order of 100 �m. In this low-temperature limit and for very
long tubes, impurities may start to play a role in the elec-
tronic transport. In what follows, we will show how this is
exactly the case analyzed very recently in the experiments

reported in Ref. 16, in which an interplay between the diffu-
sive and localized regimes is taking place.

As mentioned above, three lengths characterize the nano-
tube resistance behavior: L, �ac

eff, and L0. Apart from the three
canonical regimes already discussed, an unexplored regime
emerges when L0��ac

eff�L. This is a regime in which we can
expect to have localized states in the sample; but because of
the electron-phonon interaction, we cannot expect a 2R
=R0 exp�L /L0� law. The crucial point to realize is that if
�ac

eff�L, the localized wave functions extend coherently to
the whole system, with peaks in the density of states ran-
domly distributed and having a linewidth proportional to
exp�−L /L0�,20 which is responsible at the end of the expo-
nential behavior of the resistance. However, when the elec-
tron phonon is operative and �ac

eff�L, the localized states
only extend coherently to a region of length �ac

eff. This indi-
cates that the sharp peaks in the density of states in this case
would have a linewidth proportional to exp�−�ac

eff /L0�. At the
same time, the electron-phonon interaction introduces a dif-
fusive process as electrons move incoherently between local-
ized states. This suggests the introduction of the factor �1
+L /�ac

eff� contributing to the nanotube resistance. All these
arguments imply that for L0��ac

eff�L, the nanotube resis-
tance should go as 2R=R0�1+L /�ac

eff�exp��ac
eff /L0�. This equa-

tion can be easily generalized to include the case �ac
eff�L by

replacing in the exponent 1 /�ac
eff by 1 /�ac

eff+1 /L. This yields
the equation

2R = R0�1 +
L

�ac
eff	exp� �ac

effL

��ac
eff + L�L0

� �13�

valid for any values of �ac
eff, L, and L0, In particular, for L

→0, Eq. �13� yields 2R=R0�1+L�1 /�ac
eff+1 /L0��, showing

that in this limit there is an effective mean-free path, �eff,
given by 1 /�eff=1 /�ac

eff+1 /L0.
Before comparing the results emerging from Eq. �13� with

the experimental data reported in Ref. 16, it is convenient to
reconsider our approximation for �ac

eff at low T. As shown in
Fig. 2, �ac

eff is proportional to 1 /kBT for small �; in the other
limit, �ac

eff decreases as 1 /. Now if the applied voltage, eV,
is much higher than �C, �ac

eff should decrease with that volt-
age as 1 /eV. This argument indicates that �ac

eff saturates for
very short tubes and high bias, and it suggests a length-
dependent �ac

eff,

�ac
eff�T� =

�ac
eff�T0�

T/T0 + b�eff/L
, �14�

where T0 is the room temperature and b a constant. In Eq.
�14�, we have introduced the factor �eff /L that takes into
account how the effective bias is reduced for long nanotubes
if �eff�L; otherwise �eff /L should be replaced by 1. Note
that Eq. �14� is just an interpolation between the two limits
of low and high biases. For very low bias, �ac

eff�T��1 /T,
whereas for a high one, �ac

eff takes a constant value. The pa-
rameter b in Eq. �14� determines the relative weights of the
two limiting values for low and high biases in the final
�ac

eff�T�. Therefore, in principle, this parameter b depends on
the applied voltage and will be used in our calculations as a
fitting parameter to the experiment.
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FIG. 4. �Color� Contour plots rendering n+�x ,E� at V=1.0 V for
two different L’s �L=0.5 �m in �a� and L=4 �m in �b��. �c� Mean
value of nB�x� for the four voltages analyzed V=0.4 V �blue full
line�, V=0.7 V �black dashed line�, V=1.0 V �red dotted line�, and
V=1.5 V �green dash-dotted line� as a function of the length of the
nanotube. Inset shows nB�x� for two voltages �V=0.4 V: blue
curves and V=1.0 V: red curves� for three different L’s �L
=0.1 �m: full lines; L=0.5 �m: dashed lines; and L=4.0 �m:
dash-dotted lines.
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Figure 5 shows a comparison between Eq. �13� and the
experimental data of Ref. 16. We have taken �ac

eff�T0�
=0.8 �m and �eff�L→0�=7 �m as in the experiments.16 As
stated above, in our analysis there is only one fitting param-
eter, b=0.076. In this regards, it is worth stressing that the
applied bias is 6.4 meV�75 K�, this value explaining the
importance of the bias correction for �ac

eff as introduced in Eq.
�14�. The different behaviors for R�L� shown in Fig. 5 for the
three temperatures is related to the change in �ac

eff with T �see
inset of Fig. 5�. In our calculations, we find L0=21 �m and

for long tubes �L=370 �m�, �ac
eff=89, 41, and 22 �m for

T=1.65, 5, and 10 K, respectively. It is the high value of
�ac

eff /L0 for T=1.65 K found for long tubes, the cause of the
rapid increase in the resistance as a function of L for this
case. Note that in this limit, �ac

eff�1 /T, and then Eq. �13�
leads to R�exp�1 /T� when L��ac

eff. This is exactly the char-
acteristic T dependence for the resistance within the so-
called thermally activated electron conduction in the local-
ized regime, as described in Ref. 21. It is also worth
mentioning that due to the applied bias, �ac

eff�L→0� tends to a
constant value, independent on T �see inset in Fig. 5�. This
explains why in the experiments reported in Ref. 16, there is
a saturation value for �eff at very low temperatures.

In conclusion, we have shown how the electron transport
in SWNTs depends on the nanotube length and applied bias.
For high biases, hot optical phonons control the diffusive
regime settled in the nanotube. We have demonstrated that,
however, for long enough tubes, acoustical phonons start to
dominate the nanotube resistance. A different transport re-
gime appears if L0, the localization length, is smaller than the
electron mean-free path, �. We have shown that if ��L,
electron conduction enters to a new transport regime, in
which electrons propagate through localized states assisted
by phonons. This finding helps completing the landscape of
the electronic transport regimes in single-walled carbon
nanotubes.
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FIG. 5. Theoretical results for R as obtained from Eq. �13� for
three different T’s: T=1.65 K �full line�, T=5 K �dashed line�, and
T=10 K �dotted line�. Dots correspond to the experimental data as
reported in Ref. 16. Inset displays the behavior of �ac

eff as a function
of L for the three T’s analyzed in the main panel.
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